If it's not what You are looking for type in the equation solver your own equation and let us solve it.
384a^2-294=0
a = 384; b = 0; c = -294;
Δ = b2-4ac
Δ = 02-4·384·(-294)
Δ = 451584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{451584}=672$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-672}{2*384}=\frac{-672}{768} =-7/8 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+672}{2*384}=\frac{672}{768} =7/8 $
| 2x-4/3x-6=2/3 | | 1/8y-2/3=51/2 | | 2x-4/3x-6=2/5 | | 15d+28d+18d=300 | | 12=10z-6z | | 2n^-2+17n^-1+18=0 | | 7/(x+1)-3/(x-1)=5x/x^2-1 | | 3=7+√5x+6 | | -11+10x+11-33=x+2x100 | | 7+4x/3-12=-3 | | 6x-9=7×+7 | | 7x+7=10×-38 | | x-3=+3-x | | 16r+2r^2=54 | | 2(2y-1)=-10 | | (6-z)(3z-1)=0 | | e/15=15 | | 2x(7x+9)=90 | | 2r(9-r)+2r^2=54 | | 218=24*2+2w | | 0m+6=369 | | (7x-1)^1/3+11=7 | | 6x-14+24=46 | | 13x-11=7x+10 | | x^2+24x+30=0 | | 1 8y−2 3=51 2 | | 16^x+4=32^2x-10 | | 3x-10=5×-70 | | 3r+7=21 | | N-12x8=12 | | 48=12+b | | 64^2x+3=16^x+2 |